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The structure of fully developed turbulence in a smooth circular tube has been studied 
for a Reynolds number of 69000 (based on centre-line velocity and radius) and at a 
distance from the wall of y+ = 70. The data were taken as correlations of the longitu- 
dinal component of turbulence in narrow frequency bands, the longitudinal and 
transverse separations being varied simultaneously. Fourier transformation of these 
correlations dehes  power spectral density functions with frequency o and longitudinal 
and transverse wavenumbers kz and k, as the independent variables. In this form the 
data show the distribution of convection velocity among waves of different size and 
inclination as well as defining the coherence lengths associated with such wave packets. 

Essential features of a geometrically similar wave description of the turbulence are 
discussed, such a model allowing considerable simplification in the description of the 
turbulence both for two-point and three-point space-time correlations of the velocity 
field. Morrison & Kronauer (1969) predicted that the wave convection velocity should 
depend only on total wavenumber k in a specific manner related to the mean velocity 
profile. The experimentally determined convection velocities contradict this predic- 
tion. An alternative formulation for convection velocity involving an additional 
empirical function of frequency S(w), fits the data for the range of experimentation. 
Unfortunately the results provide no information on the functional dependence (if 
any) of convection velocity on distance from the wall. 

1. Introduction 
Significant effort has been devoted to determining the structure of fully developed 

turbulence by spatial and temporal correlations of the velocity and wall pressure 
fields. Townsend (1956), using a few two-point spatial correlations of the longitudinal 
velocity fluctuation, postulated a set of attached eddies capable of absorbing energy 
from the mean motion, while dissipating most of their energy in the sublayer. Town- 
send (1958) later modified this theory to comply with the measurements of Grant 
(1958). Favre, Gaviglio & Dumas (1957, 1958) made measurements of space-time 
correlations in a turbulent boundary layer and reasonably extensive results for the 
longitudinal velocity correlation R,,(z, y, z, T ~ )  - with optimum time delay T~ - are 
presented as contour maps in the 2, y and y, z planes. In the Cartesian co-ordinates 
chosen x, y and z represent the relative separation of the measuring points in directions 
parallel to the outer flow, normal to the wall and transverse to the outer flow respec- 
tively. However, the elimination of the effect of convection velocity, presumably the 
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FIGURE 1. Pipe co-ordinates and velocity components. y = a - r, z = af3. 

reason for introducing rM, makes it difficult to visualize the results in terms of a flow 
structure. 

Bull (1967) sought information on the wall-pressure fluctuations through space- 
time correlations in broad and narrow frequency bands. He demonstrated that the 
wall-pressure correlations may be collapsed on to a single curve - which agrees with 
the structural similarity found in the measurements of Morrison & Kronauer (1969) 
for longitudinal turbulence data. Elliott (1  972) measured static pressure and velocity 
fluctuations in an atmospheric boundary layer, the results indicating significant co- 
herence in velocity fluctuations with separation from the boundary. Important 
sections of these results also confirm predictions expected from Morrison & Kronauer’s 
(1969) work. Bullock, Cooper & Abernathy (1978) demonstrate that low-frequency, 
large-scale turbulence fluctuations extend over the majority of the radial region and 
that these components are highly correlated over large radial separations. By using 
a similarity variable k,y, along with a normalized wall distance y/ylret, both the 
Covariant and Quadrature narrow frequency band correlations of the longitudinal 
velocity fluctuations were shown to collapse. 

Fully developed turbulence in a smooth circular tube, while representing one of 
the simplest cases of shear-flow turbulence, is difficult to completely quantify experi- 
mentally. Description of the turbulent velocity field by two-point space-time corre- 
lations requires six functions of five arguments each. The dependent variables are 
the three velocity components which have six pair combinations. Assuming the 
correlations are stationary in the x, z and t variables (defined in figure 1) these five 
arguments are: x, - x2,  z1 - z2, t ,  - t,, y, and y2. Studies of the energy exchange mecha- 
nism by three-point space-time correlations would require 10 functions (triple com- 
binations of the three velocity components) in nine arguments. The difficulty of 
experimentally determining and interpreting such a plethora of data prompts one to 
seek ways of reducing the dimensionality of the flow description. 

Fourier transformation of the correlations in the stationary arguments x1 - x,, 
zl-zz, and t , - t2  will yield spectral functions with the corresponding transform 
arguments k,, ka and w.  As the correlations are of relatively small extent transversely 
(about one radian) the use of a Fourier transform in place of a Fourier series expansion 
is permissible and is used throughout this paper. Non-stationarity in the y co-ordinate 
prohibits Fourier transformation, although an eigenfunction expansion can be 
effected (Lumley 1967). Correlation functions and power density functions are con- 
jugate forms of the same data and we can validly consider either representation, i.e. 
Rt j (Ax ,  Az,  At,  y,, y2) or Qij(kX, k,, w ,  y,, y2). A spectral representation per se involves 
no simplification in the flow description. 
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However a considerable simplification is possible if the flow can be represented by a 
collection of geometrically similar Tollmien-Schlichting-type waves. Such an approach 
is outlined by Morrison & Kronauer (1969) and will be considered in more detail for 
the remainder of this paper. No claim is made from the present data that the flow is 
composed physically of geometrically similar waves - a standpoint quite validly 
questioned by Kovasznay, Kibens & Blackwelder (1970), who point out that a spectral 
approach is not the only possible transformation of the space-time correlations. 
Nevertheless, even with this limitation in mind, it is believed that pipe turbulence 
can be most economically represented by a geometrically similar wave model and 
furthermore the present data do not conflict with such a hypothesis. 

2. Proposed wave model 
The concept of geometric similarity applied to the constant stress region of the 

turbulent boundary layer is both well established and well illustrated by Townsend 
(1976). Using arguments based on the formation of Reynolds stress and energy dissi- 
pation scale he postulates the flow to be composed of persistent organized flow patterns 
which extend to the wall. These attached eddies have diameters proportional to the 
distance of their centres from the wall and are geometrically similar in their velocity 
distributions - although no constraint is placed on the variation of a particular eddy 
centre in the streamwise direction. 

A wave model, of the type first proposed by Morrison & Kronauer (1969) is a 
particular case of geometric similarity in which the proportions of a particular dis- 
turbance are invariant in the stream-wise direction but the amplitude fluctuates with 
energy exchange to or from this disturbance. Convection velocity is constrained to be 
invariant in the co-ordinate y defining distance from the wall - thus guaranteeing no 
distortion of the disturbance in the streamwise direction. 

Following the work of Morrison & Kronauer (1969) we consider the flow as being 
composed of two-dimensional waves (a/%? = 0) of the type shown in figure 2. For a 
component of wavenumber k and inclination a the following equations represent the 
velocity fluctuations in the co-ordinate system (2, y ,  2) with 2 oriented in the direction 
of wave propagation : 

c ( t ,  k ,  a) = A ( t ,  k,  a )  W[h,(ky,  a) exp ( jk(2 - C ( k ,  a )  . t ) ) ] ,  

v(t ,  k ,  a)  = A(t,  k ,  a) W[ -jh,(ky,  a) exp ( jk(2 - C(k ,  a ) .  t ) ) ]  = - &, (1) 

&(t, k,  a)  = A ( t ,  k ,  a )  W[h;(ky,  a) exp(jk(2 - C ( k ,  a )  . t ) ) ]  = @,. 
On satisfying the continuity equation we have vy -t &; = 0. The velocities a, v, Q are 
actually functions of five arguments, viz. t ,  k ,  a, y ,  2; however, for convenience the 
functional dependence on y and 2 is suppressed in (1)  and in the subsequent text. 
Henceforth the real parts are taken to represent physical quantities and the prime 
denotes differentiation of the complex functions h, and h, with respect to ky ,  the 
scaling variable. 

Such a wave will induce velocity fluctuations in the co-ordinate directions x and z 
given by 

~ ( t ,  k, a) = s(t, k ,  a) cos a + &(t, k ,  01) sin a, 1 (2) 
w(t, k ,  a) = a(t, k,  a) sin a + &(t, k, a) cos a, J 
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FIQURE 2. Wave schematic diagram. k ,  = k sin a, k, = k cos a, W+ = C: k,f = C+k+. 

while the total longitudinal velocity fluctuation u(t) is 

similar equations applying to the components w ( t )  and w(t). 
For each component wave in the flow, the three velocity components u(t, k,  a), 

v(t ,  k, a) and w(t, k ,  a) are instantaneously related, although their magnitude is con- 
stantly varying due to energy exchange with other waves in the flow. This varying 
magnitude for each component wave is manifested in an apparent spread of convection 
velocities (or wave frequencies w = k C(k,  a)), as the three-dimensional spectral den- 
sity function of the longitudinal velocity illustrates : 

auu(w,k,a) = 0-5 Ih ,~osa+h;s ina1~@~~(g ,k ,a ) .  (4) 

Here w,, = k . C(k,  a), 5 = w - w,, and OAA(Y,  k ,  a) is the frequency spectrum of the 
amplitude term A(t ,  k ,  a). Equation (4) is obtained by first determining the complex 
Fourier transform of the random velocity fluctuation u(t, k,  a) thus allowing the direct 
computation of QUu(w, k ,  a). In this formulation 'DUu(w, k ,  a) is assumed to exist only 
for positive w while @ A A ( c ,  k ,  a) is defined for both positive and negative C;. Zero 
energy exchange to or from a wave (A(t ,  k ,  a) = a constant) implies an infinitesimal 
spectral spread in w and corresponds to a wave of infinite extent in the direction of 
propagation. It is the spread in convection velocities which demonstrates energy 
exchange between component modes of the flow. 
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If the turbulence can be considered as composed of geometrically similar waves, 
as postulated in ( l ) ,  considerable simplification in the flow description is possible. 
All the two point space-time properties are represented by the functions h,(ky, a), 
h2(ky, a), C(k,  a) and QAA(c, k,  a) instead of the original six correlation functions (of 
five arguments each) as required by the unmodified space-time correlation description. 
Studies of the energy exchange mechanism by three-point space-time correlations 
would require 10 functions (triple combinations of the three velocity components) 
in nine arguments. With the geometrically similar wave model proposed, description 
of the energy exchange mechanism is provided by the single three point spectral 

Several tests may be designed to check the applicability of a geometrically similar 
wave model. Firstly, is there a unique relationship between circular frequency and 
the wave inclination and wavenumber irrespective of distance from the wall ? This is 
equivalent to requiring that C(k,  a) and k ,  a) be independent of y throughout 
the flow. Secondly, is there a significant degree of co-ordination for any of the three 
fluctuating velocity components in the direction normal to the wall? Thirdly, are the 
statistical properties of A ( t ,  k,  a)  such as to make a wave model representation physic- 
ally useful in quantifying the turbulence ? 

The work of Bullock et al. (1978) indicates that the large-scale fluctuations are highly 
correlated radially and scale on a similarity variable k x y  (along with a normalized wall 
distance y /yrer) .  These results indicate that the second condition is capable of being 
satisfied, however further experiments with varied distances from the wall and other 
velocity components are being conducted to  establish these fist two conditions more 

Determination of the wave parameters C(k,  a) and QAA(c, k,  a) is possible by con- 
sidering the three-dimensional power spectral density function of the longitudinal 
velocity Quu(w, k,, k,) defined from the series of correlations in narrow frequency bands 
formed by varying the longitudinal and transverse spacings jointly at a fixed distance 
from the wall. This technique is further described in Q 4, with (8) and (9) providing 
the functional relationships between filtered spatial correlations and their associated 
spectral density functions. The investigations of Morrison & Kronauer (1969) and 
later Morrison, Bullock & Kronauer (1971) considered only those correlations formed 
by variation of longitudinal spacing at  zero transverse separation and vice versa. 
Integral projections of QJw, k,, kz) on to the k, = 0 and ks = 0 planes produced 
Quu(w,kz) and Quu(o,kx)  respectively. These results indicate that, for any wave 
frequency o, the transverse wavenumbers kz are of much greater extent than their 
longitudinal counterparts k,. Furthermore as the spectral function Quu(w, k,) repre- 
sents the integral projection of Quu(w, k,, k,) onto the plane k, = 0, it is extremely 
likely that a cross-section through Quu(o, k,, k,) at any transverse wavenumber will 
be much narrower than indicated by Quu(w, kz).  Provided that this extent is not 
significantly greater than the results of Morrison & Kronauer (1969) a wave model 
representation would appear to be useful and the third criterion outlined above will 
be satisfied. The physical significance of this wavenumber spread will be discussed in 
the following section - this paper being concerned predominantly with determining 
the form of the wave parameters C(k,  a) and QAA(c, k, a). 

The power spectral density function Quu(w, k,, k,) is real and unchanged if the signs 
of all three arguments are reversed. Further, since the time-averaged flow is free from 

function Q A A A K l ,  6, k,, k2, alone. 

closely. 
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swirl, the correlations are symmetric in transverse spacing resulting in an even power 
spectral density function in kz. If for convenience k, is always considered positive, the 
three-dimensional spectral density is composed of two parts, Ouu(w, k,, kz) and 
OuU( - w, k,, kz), the former being associated with waves propagating against the 
mean-flow direction, while the latter corresponds to waves propagating downstream 
with the flow. Morrison & Kronauer (1969) interpreted the data of Favre et aE. (1958) 
and Willmarth & Woolridge (1962) to indicate negligible upstream propagation. 
While this approach seems justified some estimate of the percentage of upstream 
propagation would be desirable. 

3. Significance of wave parameters C(k, a) and @Ad (g, k, a) 
Considerations of the energy exchange between component waves has been shown 

to produce a spectral spread in w for any fixed wavenumber and inclination. Equation 
(4) can be expressed more generally as the cross-spectral density function between 
velocity fluctuations in any of the co-ordinate x, y and z, viz. 

@&, k, 4 = f,&, 4 @ A A K  k, 4, (5 )  

wheref,,(ky, a) and k, a) can 
be determined experimentally by selecting any velocity component pair. For con- 
venience @uu(w, k*, kz) has been measured. 

Consider a very narrow hypothetical spatial filter selecting a single component of 
wavenumber k and inclination a out of any velocity component. Depending on the 
behaviour of the amplitude term A(t ,  k, a) the observed velocity component would 
exhibit varying periods of coherence. If A(t ,  k, a) is varying slowly in time, the velocity 
component observed will be coherent over long time intervals, while rapid variation 
in A(t, k, a) will be associated with short coherence times. An estimate of the lower 
bound for the observed coherence times is provided by the inverse of the half band- 
width, B, of either QuU(w, k, a) or OAd(c, k, a). Similarly if one considered the time 
auto-correlation of the spatially filtered velocity component the decay rate of the 
basic oscillation (frequency wo = k C(k, a)) would be proportional to  Bl1.  It must be 
stressed that the coherence time B;l is a lower bound to the coherence time - that is, 
it is possible for individual members of the ensemble to have much larger coherence 
times than that of the ensemble. An alternative way of considering the frequency 
spread (fixed k and a) is to associate this with a spread in convection velocity. 

Similarly if one used a very narrow temporal filter to select a particular frequency 
w ,  then a spread of wavenumbers and inclinations would be observed. For waves of 
fixed inclination, the inverse of the half bandwidth of the wavenumber spread Bkl 
will provide a lower bound for the coherence length. Coherence time (B i l )  and co- 
herence length (Bkl), at fixed inclinations are related through the convection velocity 
C(k,a) and simply provide complimentary ways of describing the amplitude term 

Pipe turbulence is characterized by a thin layer near the wall where viscosity plays 
an important role, while in the bulk of the flow (where the mean velocity profile is 
logarithmic) the phenomena are essentially inviscid (Laufer (1954)). Morrison & 
Kronauer (1969) consider a logarithmic mean velocity profile (with complex functions 
hl and h, assumed independent of wave inclination) and consider the Navier-Stokes 

k, a) are complex for i =+ j. Hence C(k, a), 

@ A A K  k, a). 
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equations for a particular wave. For the Reynolds numbers of interest they presume 
that the viscid terms are small and rewrite the equations as linear inviscid terms and 
nonlinear terms representing forcing functions for the linear inviscid terms. To ensure 
that the linear inviscid terms are independent of absolute scale k, they postulate that 
the wave speed C(k)  matches the mean velocity component (projected into the wave 
cross-section) a t  a distance y, from the wall such that ky, is constant (B = ky,) - or 
alternatively the critical layer is also geometrically scaled for all wave sizes. For the 
pipe flow considered the longitudinal convection velocity CJk) is expressed by 

C,+(k) = 5*5+5.75logl,(/l/k+), (6) 

for the simple case of h, and ha independent of wave inclination and waves of extent 
large compared with the thickness of the wall layer (y+ .c 70). 

If this postulate of Morrison & Kronauer (1969) is correct and the critical layer 
scales geometrically on wave size then it is sufficient to check (6) for a single distance 
from the wall and several wave sizes k+ to determine if a geometrically similar wave 
model is applicable to pipe turbulence. Should the convection velocity results at  a 
single y+ disagree with (6) then either the concept of a geometrically scaled critical 
layer is wrong or the wave model postulated is incorrect with convection velocity 
dependent on distance from the wall y+. 

Obviously the best experimental strategy is to attempt to verify (6) at a single y+ 
before proceeding to the enormous task of measuring convection velocities a t  different 
distances from the wall. 

4. Experimental determination of wave spectra 
Filtered spatial correlations were measured in a 13.34 cm diameter extruded 

aluminium tube fitted with a traversing mechanism and probes as described by 
McConachie (1975). By use of a special flange arrangement, the final 64 cm section 
of pipe was removed and a Rank-Taylor alignment telescope placed within 13 cm 
of the probes thus enabling the distance from the wall to be set accurately to within 
12.5 pm. Wire parallelism and the positions of zero longitudinal and transverse 
separation were determined by placing a small optical mirror, angled at 45O, under 
the two probes and viewing their images with the alignment telescope. Because of 
the location and construction of the flange and associated tailpiece, no interference 
to the flow was expected. Leakage of air from the longitudinal and transverse slots 
in the pipe wall was prevented by the use of appropriate length epoxy sections (fitting 
flush with the pipe wall) inserted into the unused portions of these slots. Over the 
longitudinal range used, the variation in wall profile was within 25 pm while a variation 
of 90 pm transversely was symptotic of slight pipe ovality. Such variations, occurring 
as they do in regions of low correlation (and hence highest statistical uncertainty) 
have negligible effect on the measured results. At maximum longitudinal separation 
the forward probe was 63.5 diameters (8-48 metres) downstream of the pipe inlet 
section and entry screen. 

Measurement conditions were chosen as follows. From the experiments of Morrison 
& Kronauer (1969) it would appear that the waves are distributed more or less 
uniformly over a range bounded at  one extreme by the largest waves which the tube 
can contain (kkh w 2n/a+ or A&ax w a+) and at  the other extreme by the smallest 
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FIGTJRE 3. Two-dimensional filtered correlation R(x+, Z+ I o+) ; of = 0.0853, B,, = 0.10. 

waves which can be sustained against the dissipative action of viscosity (kA,  w 0-05). 
Ideally as large a range of wave sizes (kLaX/kLn) as possible should be present in the 
flow without prejudicing the resolution of measurement. On this basis a friction 
velocity of 61.3 cm sec-1 provides a wave size range of 22 and was chosen for the 
measurements described. In  addition it enabled direct comparisons to be made with 
the previous work of Morrison et al. (1969, 1971). Further, one expects that the waves 
of small inclination will have a maximum intensity for a critical layer constant 
kyc x 0.6 and so yc was chosen from the geometric mean of the maximum and minimum 
permissible wave numbers (y$ w 55). However, as some corrections due to wall effects 
could be expected at the calculated (y+ = 55) position, measurements were taken for 
y+ = 70 (y = 1.78 mm, which is just on the limit of the wall-affected region). The flow 
Reynolds number was 69000 when calculated on the pipe radius and centre-line 
velocity. 

The longitudinal velocity was measured with two linearized hot-wire anemometers 
(University of Queensland design) with tungsten wires of 5 pm diameter, 2 mm 
working length, and matched frequency response with a corner frequency of 25 kHz. 
The correlations - of which figures 3 and 4 are representative - were generated in 
narrow frequency bands a t  160 Hz (w+ = 0.0420), 325 Hz (w+ = 0.0853) and 650 Hz 
(wf = 0-171), with a heterodyne-type cross spectrum analyser, the correlations being 
normalized on the r.m.s. value of the filtered signals. Throughout this paper R(x, z I w )  
and RO(x, z I w )  are used to denote two point narrow-band correlations of the longitu- 
dinal velocity with zero time delay and 0" or 90" phase shift respectively. Filter total 
bandwidths (23,) of 10 yo (o+ = 0.0420 and w+ = 0.0853) and 5 % (w+ = 0-171) were 
used with a record length of 130 seconds per data point. To test the effect of filter 
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FIGURE 4. Longitudinal correlation results. 
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bandwidth, a 1 % half bandwidth filter was also used at w+ = 0.0853 with a record 
length of 130 seconds, however, the uncertainty in the correlations is correspondingly 
greater. Correlations were generated in this way for a total of 449 spatial separations 
up to a maximum longitudinal separation s+ = 4400 (1 1.2 cm) and transverse sepa- 
ration x+ = 1100 (24"). The longitudinal and transverse resolutions As+ = 100 and 
Az+ = 45.7 correspond to spatial Nyquist wavenumbers of k5 = 0.32 and k,+ = 0.070. 

Fourier transformation of the normalized filtered correlations was performed by 
linear interpolation between the measured values, thus allowing the contributions to 
the total integrals to be calculated analytically. Artificial ' correlation tails' were not 
added nor were the correlations smoothed before transformation. For homogeneous 
turbulent flow it is convenient to  assume k, is always positive and that sign variations 
occur in w ,  so that wave propagation in the direction of the flow will be associated 
with opposite s i p  in w and k,. Percentage upstream propagation a t  any kz is given 

by low ~'(2, o I w )  sin (k,x) da: 
= 0.5- (7) @(w k x )  

@(@, k,) + @( - 0, k,) 2 l O W  R(s, 0 10) cos ( k , s ) d z .  

Henceforth we will let @(w, k,), @(w,  k,) and @(w, kxk,) represent the total energy of 
wave propagation, both upstream and downstream, with the spectral functions cal- 
culated as follows (the definitions for @(w,k,)  being omitted as they are similar to 
those for @(w, k,)): 

2 
w w + ,  k,+) = ;low R@+, 0 I w+) cos (k,+. 2+) ds+, 

@(w+, k,+, k,+) = $loW loW R(s+, z+ I o+) cos (k,+. s+) COB (ki. z+) ds+dz+. (8) 

Normalization of the filtered correlations on the r.m.8. filtered signal has ensured that 

W 

[ @(w+, k,+, k,+) dk,+ = @(w+, k$), (9) 
J O  

with integrals 

As pointed out by Morrison & Kronauer (1969) it  is convenient to present the above 
spectra on logarithmic wavenumber scales so we define 

P(w+, k,+) = k,+ . @(~+,k,+), P(w+, k,+,k,f)  = k$ . k,+ . @(w+, k,+,k,+), (10) 

and observe that the integrals 

aD / P(w+,k ,+)d( lnk$)  = 1.0, !Iw 1 O0 ~ ( w + ,  k,+, k,+) d (~n k,+) d (Ink,+) = 1.0 
--a3 - w  

provide the correct normalization. 
Table 1 lists the one-dimensional spectral functions, calculated percentage upstream 

propagation and the integrals in wavenumber space. Calculation of the propagation of 
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upstream propagation (7) requires very accurate estimates of the correlations 
Ro(x, 0 I w )  and R(x, 0 I w )  if meaningful results are to be obtained for regions of low 
spectral density in P(w, k,). This is well illustrated by the results for w+ = 0.0853 
and filter half bandwidths of Bnp = 0.10 and Bnp = 0.01, and so the values are tabu- 
lated to correspond only with the more energetic longitudinal wavenumbers. The 
maximum upstream propagation is only 2 yo (w+ = 0.042) (considering only that 
estimate corresponding to maximum spectral density of P(w+, kz)). Although the 
correlations measurements are being repeated to improve the accuracy, the present 
results would suggest that the energy associated with upstream wave propagation is 
negligible. 

Fourier transforms P(w+, kz, ki) were first calculated for the wavenumbers kk, k,+ 
shown in table 1 revealing that the contours were relatively localized in k;, k,+ space. 
In  addition these results show that areas of negative power spectral density existed - 
a physical impossibility which results from the measurement errors associated with 
finite length correlations, finite spatial sampling and the limited integration time for 
correlation at each data point. However it should be noted that the value of these 
negative regions is typically less than 5 yo of the maximum P(w+, k$, k:) andunlikely 
to affect the shape of the two-dimensional transforms. A second set of transforms 
produced figures 5,  6 and 7 which show contour plots of P(w+, k$, k$) for various w+, 
each plot being computed for 25 equally spaced values in log k,+ and log k$ (total of 
625 spatial wavenumber points) over the range shown in the figures. 

5. Interpretation and analysis of results 
Contour plots of P(o+, k,+, k,+) for all frequencies chosen indicate that frequency 

filtering provides reasonable constraint on the longitudinal wavenumber k$ but none 
of any significance on the transverse wavenumbers. Furthermore the integral pro- 
jections P(w+, k$ ) would appear to give reasonable estimates of the cross-sectional 
thickness of P(w+, kz, k,+) at any k$. In addition the longitudinal convection velocity 
appears to be significantly dependent on transverse wavenumber. 

As the true transform T(w+, k,+, k$) is sampled over the passband of the heterodyne 
filters, it  is to be expected that the measured results P(k$, k,+) of figures 5,  6 and 7 
may not give a true estimate of T(w+, k$, k$) at the centre frequency wO+ of the filter. 
A method for estimating the effect of the filter bandwidth is as follows. The filtered 
transform P(o+, k,+, kz) can be written as 

with R = log,, (w/27r), K = log,, k and H(S2) being the filter response function. In  
this formulation it must be remembered that P(w, k,, kz) is normalized with respect 
to the frequency spectrum @ ( w )  so that the absolute spectrum w@(w)  P(w, k,, kz) 
(hereafter denoted by 9(0, k,, k,)) is required to estimate the true effect of finite 
filter bandwidths. Examination of the contour plots suggests that a suitable func- 
tional form for the true absolute spectrum R@(R) T(S2, K,, K,) would be 
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k f 

0*00100 
0.00112 
0.00127 
0.00143 
0.00162 
0.00183 
0.00206 
0.00233 
0.00263 
0.00297 
0.00335 
0.00379 
0-00428 
0.00483 
0.00545 
0.00615 
0.00695 
0.00784 
0.00885 
0.00999 
Integrals 

0.00399 
0.00451 
0.00509 
0.00575 
0.00649 
0-00733 
0.00827 
.0*00934 
0.01054 
0.01190 
0.01343 
0.01 5 17 
0.01712 
0.01933 
0.2182 
0.02463 
0.02780 
0.03 139 
0.03543 
0.03999 

Integrals 

0*00199 
0.00255 
0.00254 
0.00287 
0.00324 
0.00366 
0.00413 
0.00467 

k: cosine % 
transform upstream k f  

(1) O+ = 0.0452, B,, = 0.10 

0.0955 - 0.00099 
0.1146 - 0.00132 
0.1443 - 0.001 7 4 
0-1971 5.82 0.00230 
0,2938 2-31 0.00305 
0.4583 1.02 0.00403 
0.6985 1.19 0.00532 
0.9710 1-76 0.00704 
1.1594 2.03 0*00930 
1.1276 1.62 0.01230 
0.8643 0.45 0.01625 

0.02148 0.5410 - 
0.3155 0.48 0.02839 
0.1907 - 0.03753 
0.1365 3-09 0.04960 
0.0925 - 0.06555 
0.0113 - 0.08663 
0.0419 - 0.11450 
0.0133 - 0.151 32 
0.0085 - 0.19999 
0.9060 - Integrals 

(2) O+ = 0.171, B,, = 0.05 

0.0052 - 0~00099 
0.0175 - 0.00132 
0.0288 - 0.00174 
0.0451 - 0.00230 
0.1033 - 0.00305 
0.2950 1.49 0.00403 
0.7265 1.56 0.00532 
1.3256 1.17 0-00704 
1.6538 0.70 0.00930 
1.3184 0.26 0-01230 
0-7383 1.94 0.01625 
0.3978 2.98 0.02148 
0.1902 3.83 0.02839 
0.1568 - 0.03753 
0*1109 - 0.04960 
0.0909 - 0.06555 
0.1059 - 0.08663 
0.0733 - 0.11450 
0.0822 - 0.15132 
0.0616 - 0.19999 
0.9123 - Integrals 

(3) W+ = 0.0853, B,, = 0.10 

0.0432 - 0*00099 
0.00132 0.0690 - 

0.1076 - 0.00174 
0.00230 0.1592 - 

0.2371 - 0.00305 
0.3971 - 0.00403 
0.7263 - 0.00532 
1.1883 0.62 0.00704 

kf cosine 
transform 

0.0364 
0-0469 
0.0597 
0.0758 
0.0996 
0.1450 
0.2361 
0.3597 
0.4228 
0.4351 
0-4480 
0-3004 
0.2593 
0-1513 
0-0863 
0-0635 
0.0531 
0-0619 
0-0396 
0.2180 
0-9490 

0-0221 
0-0291 
0-0380 
0-0494 
0-0635 
0-0804 
0.1001 
0-1254 
0.1752 
0-2840 
0.3862 
0.4431 
0.4531 
0-3568 
0-2860 
0- 1 664 
0-1539 
0-0904 
0-0307 
0.0616 
0.9473 

0.0312 
0-0397 
0-0495 
0-0602 
0-0729 
0.0952 
0.1464 
0.2373 
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k f 
0.00527 
0.00595 
0.00671 
0.00758 
0.00856 
0.00966 
0.01091 
0.01231 
0.01390 
0.01569 
0.01771 
0.01999 

Integrals 

0.00199 
0.00255 
0.00254 
0.00287 
0-00324 
0.00366 
0.004 13 
0.00467 
0.00527 
0.00595 
0.00671 
0.00758 
0.00856 
0.00966 
0*01091 
0.01231 
0.01390 
0.01569 
0.01771 
0.01999 

Integrals 

kf cosine % 
transform upstream k: 

1.4623 0-53 0.00930 
1.2715 - 0.01230 
0.8489 0.19 0.01 625 
0.4793 - 0.02148 
0.2282 - 0.02839 
0.1418 - 0.03753 
0.0520 - 0.04960 
0.0740 - 0.06655 
0.0333 - 0.08663 
0.0725 - 0.11450 
0.0097 - 0.16132 

- 0.0034 - 0.19999 
0.9209 - Integrals 

(4) O+ = 0.0853, B,,, = 0.01 

0.0188 - 0.00099 
0.0434 - 0.00132 
0.0834 - 0.00174 
0,1365 - 0.00230 
0.2095 - 0.00305 
0.3585 - 0.00403 
0.6987 - 0.00532 
1.2240 16.14 0*00704 
1.5413 14.29 0.00930 
1.2947 15.96 0.01230 
0.9016 37.99 0.01625 
0-4850 - 0.02148 
0.1547 - 0.02839 
0.1325 - 0.03763 
0.2191 - 0.04960 
0.0028 - 0.06555 
0.0555 - 0.08663 
0.0899 - 0.1 1450 
0.0776 - 0.15132 
0.1486 - 0.19999 
0.9546 - Integrals 

TABLE 1. One-dimensional wave spectra 

k: cosine 
transform 

0.3283 
0.4047 
0.4509 
0.4418 
0.3642 
0.2315 
0.1166 
0.0849 
0-0692 
0.0873 
0.0392 
0.0241 
0.9414 

- 
0.0264 
0.0343 
0.0441 
0.0562 
0.0725 
0.0989 
0.1493 
0.2360 
0.3296 
0.3968 
0.4650 
0.4678 
0.4237 
0.2071 
0.1270 
0-1115 
0.0792 
0.0904 
0.0399 
0-0325 
0.9727 

R, being the logarithm of the filter centre frequency, KO the mean value of the dis- 
tribution in K,, and aa the variance of the distribution. The slope parameter 71 allows 
for variation in spectral power with frequency. Solution of the above equations 
simultaneously (with the expressions for filter response H(R)) allows values of KO, v2 
and f ( K , )  to be fitted to the experimental data points by use of a Marquardt multi- 
variable optimization routine (Kuester k Mize 1973). 

The results when corrected for filter bandwidth showed negligible variation (within 
the accuracy of the data) from the measured transforms of figures 5-7, thus indicating 
that the bandwidth of the filters was small enough. While P(w, k,, IC,) is not presented 
for w+ = 0.0853 and Bnp = 0.01, it was calculated and compared with the presented 
results for B,  = 0.10. Observed differences were slight, and even though the two 
results are of quite different accuracies this again demonstrated that filter bandwidth 
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FIGURE 5. Contours of two-dimensional power spectral density. P(o+ ,  k:, k:) ; o+ = 0.042, 

B n p  = 0.10. Maximum contour - 0.65; contour interval - 0.05. 

effects were negligible. Also calculated were the percentage half bandwidths B, of 
spatial filters corresponding to the half-power points in k, of experimental data fitted 
by (12) for particular kB and w. Figure 8 presents a contour plot of Bk,as a function 
of wave inclination and wavenumber deduced from the ridge lines shown in figures 5, 
6 and 7. The data points of the ridge lines are shown for the three w+ under considera- 
tion, but not the values of B k p  which of course enable the contours to be drawn. 

Corresponding to the average half bandwidth (Bkp = 0.25) one would expect to see 
a full length of 4n radians, or 2 wavelengths, in a typical wave packet of fixed wave- 
number and inclination. Remembering that it is possible for individual members of 
the ensemble to have larger coherence lengths than the above, the use of the wave 
model proposed would seem to be relatively justified - especially when one recalls 
that in signal processing terminology filters of 20% half bandwidth are usually 
considered as being narrow. Further the results of figures 5, 6 and 7 indicate that the 
integral projections P(w, k,) give only reasonable estimates of the thickness of 
P(w, kz, kJ at any k$ because of the significant curvature in the ridge lines of these 
plots at  high values of k,+. 

Estimation of the convection velocity associated with a particular wavenumber 
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0.010 0.030 

kx+ 

FIGURE 6. Contours of two-dimensional power spectral density. P(w+, k:, k:) ; w+ = 0.0853, 
B,,, = 0.10. Maximum contour -0.76; contour interval -0.06. 

and inclination is best performed by examining the variation in S ( w + ,  k,+, k,+) for 
fixed kt and k?. As indicated by (4) this variation will be symmetric in wf about that 
frequency w+ corresponding to the mean convection velocity. Unfortunately this 
information does not exist as it represents an enormous volume of experimentation, 
and so we must resort to estimating convection velocity from the measured transforms 
of figures 5, 6 and 7. 

We approach the problem by determining the locus of the ridge line of P(w, k,, kz) 
for each frequency and equate this to the variation in mean convection velocity with 
wavenumber and angle of inclination. Equations (1 1) and (12), while useful in deter- 
mining the wave coherence lengths, will provide a biased estimate of this ridge line 
such bias resulting from an optimization scheme in a plane non-orthogonal to the local 
direction of the ridge line. Longitudinal convection velocities were determined from 
the location of these ridge lines (figures 5, 6 and 7) and the results of the wavenumber 
dependence are shown in figure 9 in addition to some contours of constant wave inclin- 
ation 01. The positions of the ridge lines were determined by inspection on large scale 
contour plots, and the results obtained independently by five colleagues were compared 
- the total variability was less than 1 % for these manually determined ridge lines. 
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I +  
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FIGURE 7. Contours of two-dimensional power spectral density. P(w+,  k:, kz); w+ = 0.171, 
B,,, = 0.05. Maximum contour -0.86; contour interval -0.05. 

Figure 9 is at variance with the predictions of Morrison & Kronauer (1969) in two 
ways for waves of extent large with respect to the wall layer (y+ N 70), and for which 
(6) was expected to apply. Firstly, there is a strong frequency dependence in the 
value of ~9 to satisfy (6) and secondly the calculated points for C,+ 2 16 and w+ = 0.171 
would not appear to satisfy adequately the functional form of (6). However the ridge 
line data for the three frequencies would seem to collapse well if the restriction on a 
logarithmic profile is relaxed, and the convection velocities plotted as C,+(k+/S(w+) as 
shown in figure 10 - where S(w+) has been chosen to have the following values 

5(0.042) = o m ,  s(o.oa53) = 1-00, ~(0.171) = 1-60. 

In  addition figure 10 provides collapse of the ridge line data irrespective of wave 
inclination and while there is a variability in the collapse for the range 16.5 < C,+ c 14-0 
all results are within k 2 yo of the average over the whole decade of wavenumbers 
investigated. Introduction of the S(w) term to collapse the data in figure 10 indicates 
that the approach of Morrison & Kronauer in assuming geometrical scaling of the 
critical layer is incorrect. The bracketed values of y+ in figure 10 represent the distance 
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FIGURE 8. Wavenumber percentage half bandwidth contours. 
0, w+ = 0.042; 0, W+ = 0.0863; 0, W+ = 0-171. 
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FIGURE 9. Dependence of mean convection velocity on wavenumber. 0, W+ = 0.042; 
0, O+ = 0.853; 0, O+ = 6.171.0 , 0 ,  k: = 0-0023; a, H, k: = 0*0118;@,@, k: = 0.0137; 

@, @ , k: = 0.0288. 

from the wall at which the mean velocity profile U+ corresponds to values of convec- 
tion velocity C,+ shown on the f i p .  

For the constant-stress region of the turbulent boundary layer on a rough or smooth 
wall the assumption that the local values of Reynolds stress, energy dissipation and 
lateral flux of turbulent energy depend only on wall stress and distance from the wall 
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FIGURE 10. Dependence of mean convection velocity on modified wavenumber. 
0, W+ = 0.042; 0, W+ = 0.0853; 0, o+= 0.171. 

leads to the logarithmic form of the mean velocity distribution. The choice of a geo- 
metrically similar wave model, which satisfies the flow continuity equations, is one 
model capable of generating the correct form of Reynolds stress, dissipation scales 
and lateral fluxes of turbulent energy in this region of logarithmic mean velocity 
profile. However it is difficult to see how the absolute speed of wave propagation is a 
property of geometric similarity per se. Rather it would appear that the convection 
velocity of a particular wave is determined from the Navier-Stokes equation for that 
wave, and so is strongly dependent on the mean velocity profile and the energy inter- 
change from other waves in the flow. Morrison & Kronauer (1969) quite rightly 
indicate that for fully-developed turbulent flow it is the nonlinear terms which assume 
importance at the critical layer, however this should not be interpreted as necessitating 
constraint of the energy exchange process to select only those waves with convection 
velocities satisfying geometric scaling of the critical layer. 

The results of Bullock et al. (1978) provide no experimental measure of k, or kz for 
their filtered correlations normal to the wall. As such they inferred k, from the 
filtering frequency w and elected to ignore any angular variation due to a spread on 
k, for that frequency. Hence the data collapse with L,y does not rigorously indicate 
similarity of streamlines in the total wavenumber sense (that is with ky). However 
their similarity curves do collapse the data for a frequency range of 6 to 1 and so tend 
to support a wave model with no geometric constraint of the critical layer. 

Figures 9 and 10 are derived on the basis that the ridge of P(w,  L,kJ gives a true 
estimate of the convection velocity C,(k, a). If one plots now the absolute spectrum 
P(w, k,, kz) against w and k, for fixed k,, it  will be apparent that there is a variation 
in power of these contours from low to high k,. Alternatively we say that in terms of 
(12) the slope parameter 7 is in general non-zero. Hence one would expect that deter- 
mination of convection velocity by holding w and k, constant will in general give a 
different result than an optimization with kB and kz constant - the difference in 
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estimate being a function of the slope parameter 7. Furthermore if the slope parameter 
r ]  is zero a t  the kz under investigation both optimization schemes will yield identical 
results, and the ridge line method (on which figures 9 and 10 were derived) will give 
an unbiased estimate of the convection velocity C(k,  a) for those kz where 7 = 0. 

At each ks the maximum value of P(w, kz, kz) a t  the three experimental frequencies 
was determined and plotted against the value of k, corresponding to this maximum. 
The curves were normalized to unity at  wf = 0.0853 and interpolated by a quadratic 
in k, -the derivative of which is an estimate of the slope parameter 7. Examination 
of these curves a t  w+ = 0.042 showed that all values lay in the range 0.7 to 1.8 with 
the values for k$ = 0.0023 and 0.0118 < k$ < 0.0137 lying in the range 0.9 to 1.10 
and exhibiting negligible slope parameter 7. Hence we would expect that these sections 
of the ridge line should provide an unbiased estimate of the convection velocity for 
both w+ = 0.042 and w+ = 0-0853. Similarly for w+ = 0.0853 and w+ = 0.171 this 
applies for 0.0248 < k,+ < 0.0334, although the curvature of the ridge lines with high 
kz (figures 5, 6 and 7) must cast doubt on the strict applicability of this reasoning a t  
these large values of kz. For reference some values of k$ (and hence k+) corresponding 
to r] = 0 have been marked on figure 9. From these results it is inferred that figures 9 
and 10 support the data collapse as C,+(k+/S(w+)) with no bias for those k$ where 
r] = 0, and it is believed that the non-zero slope parameter will not significantly effect 
the other data points for the k:,+ range under investigation. 

The collapse of figure 10 is equivalent to plotting wave convection velocity C$ as 
a function of wave critical layer height y;.  In  their derivation of (6), Morrison t 
Kronauer (1969) effectively assumed that the wave height (and hence ye+) was large 
when compared with the dimensions of the wall region (y+ < 70). As such one might 
expect their functional form (when modified to include the S(w)  term) to apply for 
higher convection velocities, e.g. C,+ > 18, but unfortunately in the present experiment 
the Reynolds number was too low and the filtering frequencies too high to guarantee 
a significant region at higher convection velocities. For waves with critical layer 
dimensions comparable to those of the wall layer, one would expect viscosity to play 
a significant part in the generation of the wave stream functions hl and ha. However 
the collapse of figure 10 appears adequate to wave convection velocities above C,+ = 12 
(corresponding to a distance from the wall y+ 2 20 from the universal velocity profile). 

No attempt has been made to correlate the percentage half bandwidths Bkp as the 
contour plots of figures 5,6 and 7 indicate that for high k$ (and relatively high curva- 
ture in the ridge lines with k,+ and k$),  the percentage half bandwidth Bkp will give an 
erroneous estimate of the spectral spread in w+ for a wave of fixed inclination and 
wavenumber (as B,  is determined in a plane non-orthogonal to  that of maximum 
power gradient in u+). Direct measurement of the variation in u+ a t  fixed k+ and a 
will provide the associated distribution in convection velocity and such a project is 
under investigation a t  present. 

In  evaluating the results overall we should re-examine the flow conditions chosen 
in the design of the experiment. From the contour plots of figures 5, 6 and 7 and the 
ridge line data of figure 9 it is obvious that the more energetic waves are spread over 
the range 

6.6' c a < 77O, 0-0033 < k+ c 0.0415, 0.23 c k+y+ < 2.90. 

As such areasonable range of wave sizes (k&&&, = 12.6) h a  been covered although 
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this could have been extended to lower k+ by choice of lower filter frequencies, and to 
higher k+ by the use of higher Reynolds numbers. Similarly the choice of the measure- 
ment station at  y+ = 70 rather than further out in the flow has selected the smaller 
wavelength components in the flow on an intensity basis, whereas measurement 
further out would have selected the longer wavelength components and allowed 
investigation of the higher C,+ regime of figure 10. However as one would expect the 
longer wavelength components to be less affected by viscous effects, the choice of 
y+ = 70 has indicated more strongly the potential of a geometrically similar wave 
model for collapsing the results of boundary layer turbulence. 

6. Conclusion 
The paper presents the first measurements, to the author's knowledge, of the three- 

dimensional power density distribution function Quu(kX, k,, w ) ,  i.e. the Fourier trans- 
form of the cross-correlation function Ruu(Az, Az, t )  at a fixed y+ distance of 70. The 
postulate of Morrison & Kronauer (1969) of a similarity variable ky scaling the location 
of the critical layer is tested and found to be unsatisfactory. With the introduction of 
a modified variable C,+(k+/S(w+)) the convection velocity appears to be independent 
of the wave propagation angle a even though the power is distributed over a wide 
range of a, viz. 7-77". 

The critical layer for waves of reasonable intensity as measured at the y+ station of 
70 covers a y+ range of 20-150 corresponding to a U+ of 12 to 18. The smallest wave- 
length of turbulence with significant energy at w+ = 0.171 is A+ = 150 while the 
largest wavelength measured at  the lower frequency w+ = 0-042 is A+ = 1990, which 
is very close to the equivalent y+ of the centre of the tube, viz. 2600. 

The data demonstrate that the thickness of the sheet on which the energy of the u 
component is located in w,  k,, k, space is relatively thin and that the bandwidth 
associated with u turbulence is relatively undamped possessing a coherence length 
for a wave packet of a t  least 18 wavelengths. 

This extensive but nevertheless preliminary experiment provides the justification 
for pursuing a more detailed and larger investigation at  defined yl, y, locations to 
determine the exact form of the h,, h, functions for the velocity components, as well 
as investigating the convection velocity dependence over a larger range of wave 
parameters. 
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